Orbits  1
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Macros Pages
object.h
Go to the documentation of this file.
1 #ifndef Py_OBJECT_H
2 #define Py_OBJECT_H
3 #ifdef __cplusplus
4 extern "C" {
5 #endif
6 
7 
8 /* Object and type object interface */
9 
10 /*
11 Objects are structures allocated on the heap. Special rules apply to
12 the use of objects to ensure they are properly garbage-collected.
13 Objects are never allocated statically or on the stack; they must be
14 accessed through special macros and functions only. (Type objects are
15 exceptions to the first rule; the standard types are represented by
16 statically initialized type objects, although work on type/class unification
17 for Python 2.2 made it possible to have heap-allocated type objects too).
18 
19 An object has a 'reference count' that is increased or decreased when a
20 pointer to the object is copied or deleted; when the reference count
21 reaches zero there are no references to the object left and it can be
22 removed from the heap.
23 
24 An object has a 'type' that determines what it represents and what kind
25 of data it contains. An object's type is fixed when it is created.
26 Types themselves are represented as objects; an object contains a
27 pointer to the corresponding type object. The type itself has a type
28 pointer pointing to the object representing the type 'type', which
29 contains a pointer to itself!).
30 
31 Objects do not float around in memory; once allocated an object keeps
32 the same size and address. Objects that must hold variable-size data
33 can contain pointers to variable-size parts of the object. Not all
34 objects of the same type have the same size; but the size cannot change
35 after allocation. (These restrictions are made so a reference to an
36 object can be simply a pointer -- moving an object would require
37 updating all the pointers, and changing an object's size would require
38 moving it if there was another object right next to it.)
39 
40 Objects are always accessed through pointers of the type 'PyObject *'.
41 The type 'PyObject' is a structure that only contains the reference count
42 and the type pointer. The actual memory allocated for an object
43 contains other data that can only be accessed after casting the pointer
44 to a pointer to a longer structure type. This longer type must start
45 with the reference count and type fields; the macro PyObject_HEAD should be
46 used for this (to accommodate for future changes). The implementation
47 of a particular object type can cast the object pointer to the proper
48 type and back.
49 
50 A standard interface exists for objects that contain an array of items
51 whose size is determined when the object is allocated.
52 */
53 
54 /* Py_DEBUG implies Py_TRACE_REFS. */
55 #if defined(Py_DEBUG) && !defined(Py_TRACE_REFS)
56 #define Py_TRACE_REFS
57 #endif
58 
59 /* Py_TRACE_REFS implies Py_REF_DEBUG. */
60 #if defined(Py_TRACE_REFS) && !defined(Py_REF_DEBUG)
61 #define Py_REF_DEBUG
62 #endif
63 
64 #ifdef Py_TRACE_REFS
65 /* Define pointers to support a doubly-linked list of all live heap objects. */
66 #define _PyObject_HEAD_EXTRA \
67  struct _object *_ob_next; \
68  struct _object *_ob_prev;
69 
70 #define _PyObject_EXTRA_INIT 0, 0,
71 
72 #else
73 #define _PyObject_HEAD_EXTRA
74 #define _PyObject_EXTRA_INIT
75 #endif
76 
77 /* PyObject_HEAD defines the initial segment of every PyObject. */
78 #define PyObject_HEAD \
79  _PyObject_HEAD_EXTRA \
80  Py_ssize_t ob_refcnt; \
81  struct _typeobject *ob_type;
82 
83 #define PyObject_HEAD_INIT(type) \
84  _PyObject_EXTRA_INIT \
85  1, type,
86 
87 #define PyVarObject_HEAD_INIT(type, size) \
88  PyObject_HEAD_INIT(type) size,
89 
90 /* PyObject_VAR_HEAD defines the initial segment of all variable-size
91  * container objects. These end with a declaration of an array with 1
92  * element, but enough space is malloc'ed so that the array actually
93  * has room for ob_size elements. Note that ob_size is an element count,
94  * not necessarily a byte count.
95  */
96 #define PyObject_VAR_HEAD \
97  PyObject_HEAD \
98  Py_ssize_t ob_size; /* Number of items in variable part */
99 #define Py_INVALID_SIZE (Py_ssize_t)-1
100 
101 /* Nothing is actually declared to be a PyObject, but every pointer to
102  * a Python object can be cast to a PyObject*. This is inheritance built
103  * by hand. Similarly every pointer to a variable-size Python object can,
104  * in addition, be cast to PyVarObject*.
105  */
106 typedef struct _object {
108 } PyObject;
109 
110 typedef struct {
112 } PyVarObject;
113 
114 #define Py_REFCNT(ob) (((PyObject*)(ob))->ob_refcnt)
115 #define Py_TYPE(ob) (((PyObject*)(ob))->ob_type)
116 #define Py_SIZE(ob) (((PyVarObject*)(ob))->ob_size)
117 
118 /*
119 Type objects contain a string containing the type name (to help somewhat
120 in debugging), the allocation parameters (see PyObject_New() and
121 PyObject_NewVar()),
122 and methods for accessing objects of the type. Methods are optional, a
123 nil pointer meaning that particular kind of access is not available for
124 this type. The Py_DECREF() macro uses the tp_dealloc method without
125 checking for a nil pointer; it should always be implemented except if
126 the implementation can guarantee that the reference count will never
127 reach zero (e.g., for statically allocated type objects).
128 
129 NB: the methods for certain type groups are now contained in separate
130 method blocks.
131 */
132 
133 typedef PyObject * (*unaryfunc)(PyObject *);
134 typedef PyObject * (*binaryfunc)(PyObject *, PyObject *);
135 typedef PyObject * (*ternaryfunc)(PyObject *, PyObject *, PyObject *);
136 typedef int (*inquiry)(PyObject *);
137 typedef Py_ssize_t (*lenfunc)(PyObject *);
138 typedef int (*coercion)(PyObject **, PyObject **);
139 typedef PyObject *(*intargfunc)(PyObject *, int) Py_DEPRECATED(2.5);
140 typedef PyObject *(*intintargfunc)(PyObject *, int, int) Py_DEPRECATED(2.5);
141 typedef PyObject *(*ssizeargfunc)(PyObject *, Py_ssize_t);
142 typedef PyObject *(*ssizessizeargfunc)(PyObject *, Py_ssize_t, Py_ssize_t);
143 typedef int(*intobjargproc)(PyObject *, int, PyObject *);
144 typedef int(*intintobjargproc)(PyObject *, int, int, PyObject *);
145 typedef int(*ssizeobjargproc)(PyObject *, Py_ssize_t, PyObject *);
146 typedef int(*ssizessizeobjargproc)(PyObject *, Py_ssize_t, Py_ssize_t, PyObject *);
147 typedef int(*objobjargproc)(PyObject *, PyObject *, PyObject *);
148 
149 
150 
151 /* int-based buffer interface */
152 typedef int (*getreadbufferproc)(PyObject *, int, void **);
153 typedef int (*getwritebufferproc)(PyObject *, int, void **);
154 typedef int (*getsegcountproc)(PyObject *, int *);
155 typedef int (*getcharbufferproc)(PyObject *, int, char **);
156 /* ssize_t-based buffer interface */
157 typedef Py_ssize_t (*readbufferproc)(PyObject *, Py_ssize_t, void **);
158 typedef Py_ssize_t (*writebufferproc)(PyObject *, Py_ssize_t, void **);
159 typedef Py_ssize_t (*segcountproc)(PyObject *, Py_ssize_t *);
160 typedef Py_ssize_t (*charbufferproc)(PyObject *, Py_ssize_t, char **);
161 
162 
163 /* Py3k buffer interface */
164 typedef struct bufferinfo {
165  void *buf;
166  PyObject *obj; /* owned reference */
167  Py_ssize_t len;
168  Py_ssize_t itemsize; /* This is Py_ssize_t so it can be
169  pointed to by strides in simple case.*/
170  int readonly;
171  int ndim;
172  char *format;
173  Py_ssize_t *shape;
174  Py_ssize_t *strides;
175  Py_ssize_t *suboffsets;
176  Py_ssize_t smalltable[2]; /* static store for shape and strides of
177  mono-dimensional buffers. */
178  void *internal;
179 } Py_buffer;
180 
181 typedef int (*getbufferproc)(PyObject *, Py_buffer *, int);
182 typedef void (*releasebufferproc)(PyObject *, Py_buffer *);
183 
184  /* Flags for getting buffers */
185 #define PyBUF_SIMPLE 0
186 #define PyBUF_WRITABLE 0x0001
187 /* we used to include an E, backwards compatible alias */
188 #define PyBUF_WRITEABLE PyBUF_WRITABLE
189 #define PyBUF_FORMAT 0x0004
190 #define PyBUF_ND 0x0008
191 #define PyBUF_STRIDES (0x0010 | PyBUF_ND)
192 #define PyBUF_C_CONTIGUOUS (0x0020 | PyBUF_STRIDES)
193 #define PyBUF_F_CONTIGUOUS (0x0040 | PyBUF_STRIDES)
194 #define PyBUF_ANY_CONTIGUOUS (0x0080 | PyBUF_STRIDES)
195 #define PyBUF_INDIRECT (0x0100 | PyBUF_STRIDES)
196 
197 #define PyBUF_CONTIG (PyBUF_ND | PyBUF_WRITABLE)
198 #define PyBUF_CONTIG_RO (PyBUF_ND)
199 
200 #define PyBUF_STRIDED (PyBUF_STRIDES | PyBUF_WRITABLE)
201 #define PyBUF_STRIDED_RO (PyBUF_STRIDES)
202 
203 #define PyBUF_RECORDS (PyBUF_STRIDES | PyBUF_WRITABLE | PyBUF_FORMAT)
204 #define PyBUF_RECORDS_RO (PyBUF_STRIDES | PyBUF_FORMAT)
205 
206 #define PyBUF_FULL (PyBUF_INDIRECT | PyBUF_WRITABLE | PyBUF_FORMAT)
207 #define PyBUF_FULL_RO (PyBUF_INDIRECT | PyBUF_FORMAT)
208 
209 
210 #define PyBUF_READ 0x100
211 #define PyBUF_WRITE 0x200
212 #define PyBUF_SHADOW 0x400
213 /* end Py3k buffer interface */
214 
215 typedef int (*objobjproc)(PyObject *, PyObject *);
216 typedef int (*visitproc)(PyObject *, void *);
217 typedef int (*traverseproc)(PyObject *, visitproc, void *);
218 
219 typedef struct {
220  /* For numbers without flag bit Py_TPFLAGS_CHECKTYPES set, all
221  arguments are guaranteed to be of the object's type (modulo
222  coercion hacks -- i.e. if the type's coercion function
223  returns other types, then these are allowed as well). Numbers that
224  have the Py_TPFLAGS_CHECKTYPES flag bit set should check *both*
225  arguments for proper type and implement the necessary conversions
226  in the slot functions themselves. */
227 
251  /* Added in release 2.0 */
263 
264  /* Added in release 2.2 */
265  /* The following require the Py_TPFLAGS_HAVE_CLASS flag */
270 
271  /* Added in release 2.5 */
274 
275 typedef struct {
284  /* Added in release 2.0 */
288 
289 typedef struct {
294 
295 typedef struct {
302 } PyBufferProcs;
303 
304 
305 typedef void (*freefunc)(void *);
306 typedef void (*destructor)(PyObject *);
307 typedef int (*printfunc)(PyObject *, FILE *, int);
308 typedef PyObject *(*getattrfunc)(PyObject *, char *);
309 typedef PyObject *(*getattrofunc)(PyObject *, PyObject *);
310 typedef int (*setattrfunc)(PyObject *, char *, PyObject *);
311 typedef int (*setattrofunc)(PyObject *, PyObject *, PyObject *);
312 typedef int (*cmpfunc)(PyObject *, PyObject *);
313 typedef PyObject *(*reprfunc)(PyObject *);
314 typedef long (*hashfunc)(PyObject *);
315 typedef PyObject *(*richcmpfunc) (PyObject *, PyObject *, int);
316 typedef PyObject *(*getiterfunc) (PyObject *);
317 typedef PyObject *(*iternextfunc) (PyObject *);
318 typedef PyObject *(*descrgetfunc) (PyObject *, PyObject *, PyObject *);
319 typedef int (*descrsetfunc) (PyObject *, PyObject *, PyObject *);
320 typedef int (*initproc)(PyObject *, PyObject *, PyObject *);
321 typedef PyObject *(*newfunc)(struct _typeobject *, PyObject *, PyObject *);
322 typedef PyObject *(*allocfunc)(struct _typeobject *, Py_ssize_t);
323 
324 typedef struct _typeobject {
326  const char *tp_name; /* For printing, in format "<module>.<name>" */
327  Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */
328 
329  /* Methods to implement standard operations */
330 
337 
338  /* Method suites for standard classes */
339 
343 
344  /* More standard operations (here for binary compatibility) */
345 
351 
352  /* Functions to access object as input/output buffer */
354 
355  /* Flags to define presence of optional/expanded features */
356  long tp_flags;
357 
358  const char *tp_doc; /* Documentation string */
359 
360  /* Assigned meaning in release 2.0 */
361  /* call function for all accessible objects */
363 
364  /* delete references to contained objects */
366 
367  /* Assigned meaning in release 2.1 */
368  /* rich comparisons */
370 
371  /* weak reference enabler */
372  Py_ssize_t tp_weaklistoffset;
373 
374  /* Added in release 2.2 */
375  /* Iterators */
378 
379  /* Attribute descriptor and subclassing stuff */
384  PyObject *tp_dict;
387  Py_ssize_t tp_dictoffset;
391  freefunc tp_free; /* Low-level free-memory routine */
392  inquiry tp_is_gc; /* For PyObject_IS_GC */
393  PyObject *tp_bases;
394  PyObject *tp_mro; /* method resolution order */
395  PyObject *tp_cache;
396  PyObject *tp_subclasses;
397  PyObject *tp_weaklist;
399 
400  /* Type attribute cache version tag. Added in version 2.6 */
401  unsigned int tp_version_tag;
402 
403 #ifdef COUNT_ALLOCS
404  /* these must be last and never explicitly initialized */
405  Py_ssize_t tp_allocs;
406  Py_ssize_t tp_frees;
407  Py_ssize_t tp_maxalloc;
408  struct _typeobject *tp_prev;
409  struct _typeobject *tp_next;
410 #endif
411 } PyTypeObject;
412 
413 
414 /* The *real* layout of a type object when allocated on the heap */
415 typedef struct _heaptypeobject {
416  /* Note: there's a dependency on the order of these members
417  in slotptr() in typeobject.c . */
421  PySequenceMethods as_sequence; /* as_sequence comes after as_mapping,
422  so that the mapping wins when both
423  the mapping and the sequence define
424  a given operator (e.g. __getitem__).
425  see add_operators() in typeobject.c . */
427  PyObject *ht_name, *ht_slots;
428  /* here are optional user slots, followed by the members. */
430 
431 /* access macro to the members which are floating "behind" the object */
432 #define PyHeapType_GET_MEMBERS(etype) \
433  ((PyMemberDef *)(((char *)etype) + Py_TYPE(etype)->tp_basicsize))
434 
435 
436 /* Generic type check */
437 PyAPI_FUNC(int) PyType_IsSubtype(PyTypeObject *, PyTypeObject *);
438 #define PyObject_TypeCheck(ob, tp) \
439  (Py_TYPE(ob) == (tp) || PyType_IsSubtype(Py_TYPE(ob), (tp)))
440 
441 PyAPI_DATA(PyTypeObject) PyType_Type; /* built-in 'type' */
442 PyAPI_DATA(PyTypeObject) PyBaseObject_Type; /* built-in 'object' */
443 PyAPI_DATA(PyTypeObject) PySuper_Type; /* built-in 'super' */
444 
445 #define PyType_Check(op) \
446  PyType_FastSubclass(Py_TYPE(op), Py_TPFLAGS_TYPE_SUBCLASS)
447 #define PyType_CheckExact(op) (Py_TYPE(op) == &PyType_Type)
448 
449 PyAPI_FUNC(int) PyType_Ready(PyTypeObject *);
450 PyAPI_FUNC(PyObject *) PyType_GenericAlloc(PyTypeObject *, Py_ssize_t);
451 PyAPI_FUNC(PyObject *) PyType_GenericNew(PyTypeObject *,
452  PyObject *, PyObject *);
453 PyAPI_FUNC(PyObject *) _PyType_Lookup(PyTypeObject *, PyObject *);
454 PyAPI_FUNC(PyObject *) _PyObject_LookupSpecial(PyObject *, char *, PyObject **);
455 PyAPI_FUNC(unsigned int) PyType_ClearCache(void);
456 PyAPI_FUNC(void) PyType_Modified(PyTypeObject *);
457 
458 /* Generic operations on objects */
459 PyAPI_FUNC(int) PyObject_Print(PyObject *, FILE *, int);
460 PyAPI_FUNC(void) _PyObject_Dump(PyObject *);
461 PyAPI_FUNC(PyObject *) PyObject_Repr(PyObject *);
462 PyAPI_FUNC(PyObject *) _PyObject_Str(PyObject *);
463 PyAPI_FUNC(PyObject *) PyObject_Str(PyObject *);
464 #define PyObject_Bytes PyObject_Str
465 #ifdef Py_USING_UNICODE
466 PyAPI_FUNC(PyObject *) PyObject_Unicode(PyObject *);
467 #endif
468 PyAPI_FUNC(int) PyObject_Compare(PyObject *, PyObject *);
469 PyAPI_FUNC(PyObject *) PyObject_RichCompare(PyObject *, PyObject *, int);
470 PyAPI_FUNC(int) PyObject_RichCompareBool(PyObject *, PyObject *, int);
471 PyAPI_FUNC(PyObject *) PyObject_GetAttrString(PyObject *, const char *);
472 PyAPI_FUNC(int) PyObject_SetAttrString(PyObject *, const char *, PyObject *);
473 PyAPI_FUNC(int) PyObject_HasAttrString(PyObject *, const char *);
474 PyAPI_FUNC(PyObject *) PyObject_GetAttr(PyObject *, PyObject *);
475 PyAPI_FUNC(int) PyObject_SetAttr(PyObject *, PyObject *, PyObject *);
476 PyAPI_FUNC(int) PyObject_HasAttr(PyObject *, PyObject *);
477 PyAPI_FUNC(PyObject **) _PyObject_GetDictPtr(PyObject *);
478 PyAPI_FUNC(PyObject *) PyObject_SelfIter(PyObject *);
479 PyAPI_FUNC(PyObject *) _PyObject_NextNotImplemented(PyObject *);
480 PyAPI_FUNC(PyObject *) PyObject_GenericGetAttr(PyObject *, PyObject *);
481 PyAPI_FUNC(int) PyObject_GenericSetAttr(PyObject *,
482  PyObject *, PyObject *);
483 PyAPI_FUNC(long) PyObject_Hash(PyObject *);
484 PyAPI_FUNC(long) PyObject_HashNotImplemented(PyObject *);
485 PyAPI_FUNC(int) PyObject_IsTrue(PyObject *);
486 PyAPI_FUNC(int) PyObject_Not(PyObject *);
487 PyAPI_FUNC(int) PyCallable_Check(PyObject *);
488 PyAPI_FUNC(int) PyNumber_Coerce(PyObject **, PyObject **);
489 PyAPI_FUNC(int) PyNumber_CoerceEx(PyObject **, PyObject **);
490 
491 PyAPI_FUNC(void) PyObject_ClearWeakRefs(PyObject *);
492 
493 /* A slot function whose address we need to compare */
494 extern int _PyObject_SlotCompare(PyObject *, PyObject *);
495 /* Same as PyObject_Generic{Get,Set}Attr, but passing the attributes
496  dict as the last parameter. */
497 PyAPI_FUNC(PyObject *)
498 _PyObject_GenericGetAttrWithDict(PyObject *, PyObject *, PyObject *);
499 PyAPI_FUNC(int)
500 _PyObject_GenericSetAttrWithDict(PyObject *, PyObject *,
501  PyObject *, PyObject *);
502 
503 
504 /* PyObject_Dir(obj) acts like Python __builtin__.dir(obj), returning a
505  list of strings. PyObject_Dir(NULL) is like __builtin__.dir(),
506  returning the names of the current locals. In this case, if there are
507  no current locals, NULL is returned, and PyErr_Occurred() is false.
508 */
509 PyAPI_FUNC(PyObject *) PyObject_Dir(PyObject *);
510 
511 
512 /* Helpers for printing recursive container types */
513 PyAPI_FUNC(int) Py_ReprEnter(PyObject *);
514 PyAPI_FUNC(void) Py_ReprLeave(PyObject *);
515 
516 /* Helpers for hash functions */
517 PyAPI_FUNC(long) _Py_HashDouble(double);
518 PyAPI_FUNC(long) _Py_HashPointer(void*);
519 
520 typedef struct {
521  long prefix;
522  long suffix;
524 PyAPI_DATA(_Py_HashSecret_t) _Py_HashSecret;
525 
526 #ifdef Py_DEBUG
527 PyAPI_DATA(int) _Py_HashSecret_Initialized;
528 #endif
529 
530 /* Helper for passing objects to printf and the like */
531 #define PyObject_REPR(obj) PyString_AS_STRING(PyObject_Repr(obj))
532 
533 /* Flag bits for printing: */
534 #define Py_PRINT_RAW 1 /* No string quotes etc. */
535 
536 /*
537 `Type flags (tp_flags)
538 
539 These flags are used to extend the type structure in a backwards-compatible
540 fashion. Extensions can use the flags to indicate (and test) when a given
541 type structure contains a new feature. The Python core will use these when
542 introducing new functionality between major revisions (to avoid mid-version
543 changes in the PYTHON_API_VERSION).
544 
545 Arbitration of the flag bit positions will need to be coordinated among
546 all extension writers who publically release their extensions (this will
547 be fewer than you might expect!)..
548 
549 Python 1.5.2 introduced the bf_getcharbuffer slot into PyBufferProcs.
550 
551 Type definitions should use Py_TPFLAGS_DEFAULT for their tp_flags value.
552 
553 Code can use PyType_HasFeature(type_ob, flag_value) to test whether the
554 given type object has a specified feature.
555 
556 NOTE: when building the core, Py_TPFLAGS_DEFAULT includes
557 Py_TPFLAGS_HAVE_VERSION_TAG; outside the core, it doesn't. This is so
558 that extensions that modify tp_dict of their own types directly don't
559 break, since this was allowed in 2.5. In 3.0 they will have to
560 manually remove this flag though!
561 */
562 
563 /* PyBufferProcs contains bf_getcharbuffer */
564 #define Py_TPFLAGS_HAVE_GETCHARBUFFER (1L<<0)
565 
566 /* PySequenceMethods contains sq_contains */
567 #define Py_TPFLAGS_HAVE_SEQUENCE_IN (1L<<1)
568 
569 /* This is here for backwards compatibility. Extensions that use the old GC
570  * API will still compile but the objects will not be tracked by the GC. */
571 #define Py_TPFLAGS_GC 0 /* used to be (1L<<2) */
572 
573 /* PySequenceMethods and PyNumberMethods contain in-place operators */
574 #define Py_TPFLAGS_HAVE_INPLACEOPS (1L<<3)
575 
576 /* PyNumberMethods do their own coercion */
577 #define Py_TPFLAGS_CHECKTYPES (1L<<4)
578 
579 /* tp_richcompare is defined */
580 #define Py_TPFLAGS_HAVE_RICHCOMPARE (1L<<5)
581 
582 /* Objects which are weakly referencable if their tp_weaklistoffset is >0 */
583 #define Py_TPFLAGS_HAVE_WEAKREFS (1L<<6)
584 
585 /* tp_iter is defined */
586 #define Py_TPFLAGS_HAVE_ITER (1L<<7)
587 
588 /* New members introduced by Python 2.2 exist */
589 #define Py_TPFLAGS_HAVE_CLASS (1L<<8)
590 
591 /* Set if the type object is dynamically allocated */
592 #define Py_TPFLAGS_HEAPTYPE (1L<<9)
593 
594 /* Set if the type allows subclassing */
595 #define Py_TPFLAGS_BASETYPE (1L<<10)
596 
597 /* Set if the type is 'ready' -- fully initialized */
598 #define Py_TPFLAGS_READY (1L<<12)
599 
600 /* Set while the type is being 'readied', to prevent recursive ready calls */
601 #define Py_TPFLAGS_READYING (1L<<13)
602 
603 /* Objects support garbage collection (see objimp.h) */
604 #define Py_TPFLAGS_HAVE_GC (1L<<14)
605 
606 /* These two bits are preserved for Stackless Python, next after this is 17 */
607 #ifdef STACKLESS
608 #define Py_TPFLAGS_HAVE_STACKLESS_EXTENSION (3L<<15)
609 #else
610 #define Py_TPFLAGS_HAVE_STACKLESS_EXTENSION 0
611 #endif
612 
613 /* Objects support nb_index in PyNumberMethods */
614 #define Py_TPFLAGS_HAVE_INDEX (1L<<17)
615 
616 /* Objects support type attribute cache */
617 #define Py_TPFLAGS_HAVE_VERSION_TAG (1L<<18)
618 #define Py_TPFLAGS_VALID_VERSION_TAG (1L<<19)
619 
620 /* Type is abstract and cannot be instantiated */
621 #define Py_TPFLAGS_IS_ABSTRACT (1L<<20)
622 
623 /* Has the new buffer protocol */
624 #define Py_TPFLAGS_HAVE_NEWBUFFER (1L<<21)
625 
626 /* These flags are used to determine if a type is a subclass. */
627 #define Py_TPFLAGS_INT_SUBCLASS (1L<<23)
628 #define Py_TPFLAGS_LONG_SUBCLASS (1L<<24)
629 #define Py_TPFLAGS_LIST_SUBCLASS (1L<<25)
630 #define Py_TPFLAGS_TUPLE_SUBCLASS (1L<<26)
631 #define Py_TPFLAGS_STRING_SUBCLASS (1L<<27)
632 #define Py_TPFLAGS_UNICODE_SUBCLASS (1L<<28)
633 #define Py_TPFLAGS_DICT_SUBCLASS (1L<<29)
634 #define Py_TPFLAGS_BASE_EXC_SUBCLASS (1L<<30)
635 #define Py_TPFLAGS_TYPE_SUBCLASS (1L<<31)
636 
637 #define Py_TPFLAGS_DEFAULT_EXTERNAL ( \
638  Py_TPFLAGS_HAVE_GETCHARBUFFER | \
639  Py_TPFLAGS_HAVE_SEQUENCE_IN | \
640  Py_TPFLAGS_HAVE_INPLACEOPS | \
641  Py_TPFLAGS_HAVE_RICHCOMPARE | \
642  Py_TPFLAGS_HAVE_WEAKREFS | \
643  Py_TPFLAGS_HAVE_ITER | \
644  Py_TPFLAGS_HAVE_CLASS | \
645  Py_TPFLAGS_HAVE_STACKLESS_EXTENSION | \
646  Py_TPFLAGS_HAVE_INDEX | \
647  0)
648 #define Py_TPFLAGS_DEFAULT_CORE (Py_TPFLAGS_DEFAULT_EXTERNAL | \
649  Py_TPFLAGS_HAVE_VERSION_TAG)
650 
651 #ifdef Py_BUILD_CORE
652 #define Py_TPFLAGS_DEFAULT Py_TPFLAGS_DEFAULT_CORE
653 #else
654 #define Py_TPFLAGS_DEFAULT Py_TPFLAGS_DEFAULT_EXTERNAL
655 #endif
656 
657 #define PyType_HasFeature(t,f) (((t)->tp_flags & (f)) != 0)
658 #define PyType_FastSubclass(t,f) PyType_HasFeature(t,f)
659 
660 
661 /*
662 The macros Py_INCREF(op) and Py_DECREF(op) are used to increment or decrement
663 reference counts. Py_DECREF calls the object's deallocator function when
664 the refcount falls to 0; for
665 objects that don't contain references to other objects or heap memory
666 this can be the standard function free(). Both macros can be used
667 wherever a void expression is allowed. The argument must not be a
668 NULL pointer. If it may be NULL, use Py_XINCREF/Py_XDECREF instead.
669 The macro _Py_NewReference(op) initialize reference counts to 1, and
670 in special builds (Py_REF_DEBUG, Py_TRACE_REFS) performs additional
671 bookkeeping appropriate to the special build.
672 
673 We assume that the reference count field can never overflow; this can
674 be proven when the size of the field is the same as the pointer size, so
675 we ignore the possibility. Provided a C int is at least 32 bits (which
676 is implicitly assumed in many parts of this code), that's enough for
677 about 2**31 references to an object.
678 
679 XXX The following became out of date in Python 2.2, but I'm not sure
680 XXX what the full truth is now. Certainly, heap-allocated type objects
681 XXX can and should be deallocated.
682 Type objects should never be deallocated; the type pointer in an object
683 is not considered to be a reference to the type object, to save
684 complications in the deallocation function. (This is actually a
685 decision that's up to the implementer of each new type so if you want,
686 you can count such references to the type object.)
687 
688 *** WARNING*** The Py_DECREF macro must have a side-effect-free argument
689 since it may evaluate its argument multiple times. (The alternative
690 would be to mace it a proper function or assign it to a global temporary
691 variable first, both of which are slower; and in a multi-threaded
692 environment the global variable trick is not safe.)
693 */
694 
695 /* First define a pile of simple helper macros, one set per special
696  * build symbol. These either expand to the obvious things, or to
697  * nothing at all when the special mode isn't in effect. The main
698  * macros can later be defined just once then, yet expand to different
699  * things depending on which special build options are and aren't in effect.
700  * Trust me <wink>: while painful, this is 20x easier to understand than,
701  * e.g, defining _Py_NewReference five different times in a maze of nested
702  * #ifdefs (we used to do that -- it was impenetrable).
703  */
704 #ifdef Py_REF_DEBUG
705 PyAPI_DATA(Py_ssize_t) _Py_RefTotal;
706 PyAPI_FUNC(void) _Py_NegativeRefcount(const char *fname,
707  int lineno, PyObject *op);
708 PyAPI_FUNC(PyObject *) _PyDict_Dummy(void);
709 PyAPI_FUNC(PyObject *) _PySet_Dummy(void);
710 PyAPI_FUNC(Py_ssize_t) _Py_GetRefTotal(void);
711 #define _Py_INC_REFTOTAL _Py_RefTotal++
712 #define _Py_DEC_REFTOTAL _Py_RefTotal--
713 #define _Py_REF_DEBUG_COMMA ,
714 #define _Py_CHECK_REFCNT(OP) \
715 { if (((PyObject*)OP)->ob_refcnt < 0) \
716  _Py_NegativeRefcount(__FILE__, __LINE__, \
717  (PyObject *)(OP)); \
718 }
719 #else
720 #define _Py_INC_REFTOTAL
721 #define _Py_DEC_REFTOTAL
722 #define _Py_REF_DEBUG_COMMA
723 #define _Py_CHECK_REFCNT(OP) /* a semicolon */;
724 #endif /* Py_REF_DEBUG */
725 
726 #ifdef COUNT_ALLOCS
727 PyAPI_FUNC(void) inc_count(PyTypeObject *);
728 PyAPI_FUNC(void) dec_count(PyTypeObject *);
729 #define _Py_INC_TPALLOCS(OP) inc_count(Py_TYPE(OP))
730 #define _Py_INC_TPFREES(OP) dec_count(Py_TYPE(OP))
731 #define _Py_DEC_TPFREES(OP) Py_TYPE(OP)->tp_frees--
732 #define _Py_COUNT_ALLOCS_COMMA ,
733 #else
734 #define _Py_INC_TPALLOCS(OP)
735 #define _Py_INC_TPFREES(OP)
736 #define _Py_DEC_TPFREES(OP)
737 #define _Py_COUNT_ALLOCS_COMMA
738 #endif /* COUNT_ALLOCS */
739 
740 #ifdef Py_TRACE_REFS
741 /* Py_TRACE_REFS is such major surgery that we call external routines. */
742 PyAPI_FUNC(void) _Py_NewReference(PyObject *);
743 PyAPI_FUNC(void) _Py_ForgetReference(PyObject *);
744 PyAPI_FUNC(void) _Py_Dealloc(PyObject *);
745 PyAPI_FUNC(void) _Py_PrintReferences(FILE *);
746 PyAPI_FUNC(void) _Py_PrintReferenceAddresses(FILE *);
747 PyAPI_FUNC(void) _Py_AddToAllObjects(PyObject *, int force);
748 
749 #else
750 /* Without Py_TRACE_REFS, there's little enough to do that we expand code
751  * inline.
752  */
753 #define _Py_NewReference(op) ( \
754  _Py_INC_TPALLOCS(op) _Py_COUNT_ALLOCS_COMMA \
755  _Py_INC_REFTOTAL _Py_REF_DEBUG_COMMA \
756  Py_REFCNT(op) = 1)
757 
758 #define _Py_ForgetReference(op) _Py_INC_TPFREES(op)
759 
760 #define _Py_Dealloc(op) ( \
761  _Py_INC_TPFREES(op) _Py_COUNT_ALLOCS_COMMA \
762  (*Py_TYPE(op)->tp_dealloc)((PyObject *)(op)))
763 #endif /* !Py_TRACE_REFS */
764 
765 #define Py_INCREF(op) ( \
766  _Py_INC_REFTOTAL _Py_REF_DEBUG_COMMA \
767  ((PyObject*)(op))->ob_refcnt++)
768 
769 #define Py_DECREF(op) \
770  do { \
771  if (_Py_DEC_REFTOTAL _Py_REF_DEBUG_COMMA \
772  --((PyObject*)(op))->ob_refcnt != 0) \
773  _Py_CHECK_REFCNT(op) \
774  else \
775  _Py_Dealloc((PyObject *)(op)); \
776  } while (0)
777 
778 /* Safely decref `op` and set `op` to NULL, especially useful in tp_clear
779  * and tp_dealloc implementatons.
780  *
781  * Note that "the obvious" code can be deadly:
782  *
783  * Py_XDECREF(op);
784  * op = NULL;
785  *
786  * Typically, `op` is something like self->containee, and `self` is done
787  * using its `containee` member. In the code sequence above, suppose
788  * `containee` is non-NULL with a refcount of 1. Its refcount falls to
789  * 0 on the first line, which can trigger an arbitrary amount of code,
790  * possibly including finalizers (like __del__ methods or weakref callbacks)
791  * coded in Python, which in turn can release the GIL and allow other threads
792  * to run, etc. Such code may even invoke methods of `self` again, or cause
793  * cyclic gc to trigger, but-- oops! --self->containee still points to the
794  * object being torn down, and it may be in an insane state while being torn
795  * down. This has in fact been a rich historic source of miserable (rare &
796  * hard-to-diagnose) segfaulting (and other) bugs.
797  *
798  * The safe way is:
799  *
800  * Py_CLEAR(op);
801  *
802  * That arranges to set `op` to NULL _before_ decref'ing, so that any code
803  * triggered as a side-effect of `op` getting torn down no longer believes
804  * `op` points to a valid object.
805  *
806  * There are cases where it's safe to use the naive code, but they're brittle.
807  * For example, if `op` points to a Python integer, you know that destroying
808  * one of those can't cause problems -- but in part that relies on that
809  * Python integers aren't currently weakly referencable. Best practice is
810  * to use Py_CLEAR() even if you can't think of a reason for why you need to.
811  */
812 #define Py_CLEAR(op) \
813  do { \
814  if (op) { \
815  PyObject *_py_tmp = (PyObject *)(op); \
816  (op) = NULL; \
817  Py_DECREF(_py_tmp); \
818  } \
819  } while (0)
820 
821 /* Macros to use in case the object pointer may be NULL: */
822 #define Py_XINCREF(op) do { if ((op) == NULL) ; else Py_INCREF(op); } while (0)
823 #define Py_XDECREF(op) do { if ((op) == NULL) ; else Py_DECREF(op); } while (0)
824 
825 /*
826 These are provided as conveniences to Python runtime embedders, so that
827 they can have object code that is not dependent on Python compilation flags.
828 */
829 PyAPI_FUNC(void) Py_IncRef(PyObject *);
830 PyAPI_FUNC(void) Py_DecRef(PyObject *);
831 
832 /*
833 _Py_NoneStruct is an object of undefined type which can be used in contexts
834 where NULL (nil) is not suitable (since NULL often means 'error').
835 
836 Don't forget to apply Py_INCREF() when returning this value!!!
837 */
838 PyAPI_DATA(PyObject) _Py_NoneStruct; /* Don't use this directly */
839 #define Py_None (&_Py_NoneStruct)
840 
841 /* Macro for returning Py_None from a function */
842 #define Py_RETURN_NONE return Py_INCREF(Py_None), Py_None
843 
844 /*
845 Py_NotImplemented is a singleton used to signal that an operation is
846 not implemented for a given type combination.
847 */
848 PyAPI_DATA(PyObject) _Py_NotImplementedStruct; /* Don't use this directly */
849 #define Py_NotImplemented (&_Py_NotImplementedStruct)
850 
851 /* Rich comparison opcodes */
852 #define Py_LT 0
853 #define Py_LE 1
854 #define Py_EQ 2
855 #define Py_NE 3
856 #define Py_GT 4
857 #define Py_GE 5
858 
859 /* Maps Py_LT to Py_GT, ..., Py_GE to Py_LE.
860  * Defined in object.c.
861  */
862 PyAPI_DATA(int) _Py_SwappedOp[];
863 
864 /*
865 Define staticforward and statichere for source compatibility with old
866 C extensions.
867 
868 The staticforward define was needed to support certain broken C
869 compilers (notably SCO ODT 3.0, perhaps early AIX as well) botched the
870 static keyword when it was used with a forward declaration of a static
871 initialized structure. Standard C allows the forward declaration with
872 static, and we've decided to stop catering to broken C compilers.
873 (In fact, we expect that the compilers are all fixed eight years later.)
874 */
875 
876 #define staticforward static
877 #define statichere static
878 
879 
880 /*
881 More conventions
882 ================
883 
884 Argument Checking
885 -----------------
886 
887 Functions that take objects as arguments normally don't check for nil
888 arguments, but they do check the type of the argument, and return an
889 error if the function doesn't apply to the type.
890 
891 Failure Modes
892 -------------
893 
894 Functions may fail for a variety of reasons, including running out of
895 memory. This is communicated to the caller in two ways: an error string
896 is set (see errors.h), and the function result differs: functions that
897 normally return a pointer return NULL for failure, functions returning
898 an integer return -1 (which could be a legal return value too!), and
899 other functions return 0 for success and -1 for failure.
900 Callers should always check for errors before using the result. If
901 an error was set, the caller must either explicitly clear it, or pass
902 the error on to its caller.
903 
904 Reference Counts
905 ----------------
906 
907 It takes a while to get used to the proper usage of reference counts.
908 
909 Functions that create an object set the reference count to 1; such new
910 objects must be stored somewhere or destroyed again with Py_DECREF().
911 Some functions that 'store' objects, such as PyTuple_SetItem() and
912 PyList_SetItem(),
913 don't increment the reference count of the object, since the most
914 frequent use is to store a fresh object. Functions that 'retrieve'
915 objects, such as PyTuple_GetItem() and PyDict_GetItemString(), also
916 don't increment
917 the reference count, since most frequently the object is only looked at
918 quickly. Thus, to retrieve an object and store it again, the caller
919 must call Py_INCREF() explicitly.
920 
921 NOTE: functions that 'consume' a reference count, like
922 PyList_SetItem(), consume the reference even if the object wasn't
923 successfully stored, to simplify error handling.
924 
925 It seems attractive to make other functions that take an object as
926 argument consume a reference count; however, this may quickly get
927 confusing (even the current practice is already confusing). Consider
928 it carefully, it may save lots of calls to Py_INCREF() and Py_DECREF() at
929 times.
930 */
931 
932 
933 /* Trashcan mechanism, thanks to Christian Tismer.
934 
935 When deallocating a container object, it's possible to trigger an unbounded
936 chain of deallocations, as each Py_DECREF in turn drops the refcount on "the
937 next" object in the chain to 0. This can easily lead to stack faults, and
938 especially in threads (which typically have less stack space to work with).
939 
940 A container object that participates in cyclic gc can avoid this by
941 bracketing the body of its tp_dealloc function with a pair of macros:
942 
943 static void
944 mytype_dealloc(mytype *p)
945 {
946  ... declarations go here ...
947 
948  PyObject_GC_UnTrack(p); // must untrack first
949  Py_TRASHCAN_SAFE_BEGIN(p)
950  ... The body of the deallocator goes here, including all calls ...
951  ... to Py_DECREF on contained objects. ...
952  Py_TRASHCAN_SAFE_END(p)
953 }
954 
955 CAUTION: Never return from the middle of the body! If the body needs to
956 "get out early", put a label immediately before the Py_TRASHCAN_SAFE_END
957 call, and goto it. Else the call-depth counter (see below) will stay
958 above 0 forever, and the trashcan will never get emptied.
959 
960 How it works: The BEGIN macro increments a call-depth counter. So long
961 as this counter is small, the body of the deallocator is run directly without
962 further ado. But if the counter gets large, it instead adds p to a list of
963 objects to be deallocated later, skips the body of the deallocator, and
964 resumes execution after the END macro. The tp_dealloc routine then returns
965 without deallocating anything (and so unbounded call-stack depth is avoided).
966 
967 When the call stack finishes unwinding again, code generated by the END macro
968 notices this, and calls another routine to deallocate all the objects that
969 may have been added to the list of deferred deallocations. In effect, a
970 chain of N deallocations is broken into N / PyTrash_UNWIND_LEVEL pieces,
971 with the call stack never exceeding a depth of PyTrash_UNWIND_LEVEL.
972 */
973 
974 /* This is the old private API, invoked by the macros before 2.7.4.
975  Kept for binary compatibility of extensions. */
976 PyAPI_FUNC(void) _PyTrash_deposit_object(PyObject*);
977 PyAPI_FUNC(void) _PyTrash_destroy_chain(void);
978 PyAPI_DATA(int) _PyTrash_delete_nesting;
979 PyAPI_DATA(PyObject *) _PyTrash_delete_later;
980 
981 /* The new thread-safe private API, invoked by the macros below. */
982 PyAPI_FUNC(void) _PyTrash_thread_deposit_object(PyObject*);
983 PyAPI_FUNC(void) _PyTrash_thread_destroy_chain(void);
984 
985 #define PyTrash_UNWIND_LEVEL 50
986 
987 /* Note the workaround for when the thread state is NULL (issue #17703) */
988 #define Py_TRASHCAN_SAFE_BEGIN(op) \
989  do { \
990  PyThreadState *_tstate = PyThreadState_GET(); \
991  if (!_tstate || \
992  _tstate->trash_delete_nesting < PyTrash_UNWIND_LEVEL) { \
993  if (_tstate) \
994  ++_tstate->trash_delete_nesting;
995  /* The body of the deallocator is here. */
996 #define Py_TRASHCAN_SAFE_END(op) \
997  if (_tstate) { \
998  --_tstate->trash_delete_nesting; \
999  if (_tstate->trash_delete_later \
1000  && _tstate->trash_delete_nesting <= 0) \
1001  _PyTrash_thread_destroy_chain(); \
1002  } \
1003  } \
1004  else \
1005  _PyTrash_thread_deposit_object((PyObject*)op); \
1006  } while (0);
1007 
1008 #ifdef __cplusplus
1009 }
1010 #endif
1011 #endif /* !Py_OBJECT_H */

Copyright 2014 Google Inc. All rights reserved.