Orbits  1
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Macros Pages
objimpl.h
Go to the documentation of this file.
1 /* The PyObject_ memory family: high-level object memory interfaces.
2  See pymem.h for the low-level PyMem_ family.
3 */
4 
5 #ifndef Py_OBJIMPL_H
6 #define Py_OBJIMPL_H
7 
8 #include "pymem.h"
9 
10 #ifdef __cplusplus
11 extern "C" {
12 #endif
13 
14 /* BEWARE:
15 
16  Each interface exports both functions and macros. Extension modules should
17  use the functions, to ensure binary compatibility across Python versions.
18  Because the Python implementation is free to change internal details, and
19  the macros may (or may not) expose details for speed, if you do use the
20  macros you must recompile your extensions with each Python release.
21 
22  Never mix calls to PyObject_ memory functions with calls to the platform
23  malloc/realloc/ calloc/free, or with calls to PyMem_.
24 */
25 
26 /*
27 Functions and macros for modules that implement new object types.
28 
29  - PyObject_New(type, typeobj) allocates memory for a new object of the given
30  type, and initializes part of it. 'type' must be the C structure type used
31  to represent the object, and 'typeobj' the address of the corresponding
32  type object. Reference count and type pointer are filled in; the rest of
33  the bytes of the object are *undefined*! The resulting expression type is
34  'type *'. The size of the object is determined by the tp_basicsize field
35  of the type object.
36 
37  - PyObject_NewVar(type, typeobj, n) is similar but allocates a variable-size
38  object with room for n items. In addition to the refcount and type pointer
39  fields, this also fills in the ob_size field.
40 
41  - PyObject_Del(op) releases the memory allocated for an object. It does not
42  run a destructor -- it only frees the memory. PyObject_Free is identical.
43 
44  - PyObject_Init(op, typeobj) and PyObject_InitVar(op, typeobj, n) don't
45  allocate memory. Instead of a 'type' parameter, they take a pointer to a
46  new object (allocated by an arbitrary allocator), and initialize its object
47  header fields.
48 
49 Note that objects created with PyObject_{New, NewVar} are allocated using the
50 specialized Python allocator (implemented in obmalloc.c), if WITH_PYMALLOC is
51 enabled. In addition, a special debugging allocator is used if PYMALLOC_DEBUG
52 is also #defined.
53 
54 In case a specific form of memory management is needed (for example, if you
55 must use the platform malloc heap(s), or shared memory, or C++ local storage or
56 operator new), you must first allocate the object with your custom allocator,
57 then pass its pointer to PyObject_{Init, InitVar} for filling in its Python-
58 specific fields: reference count, type pointer, possibly others. You should
59 be aware that Python no control over these objects because they don't
60 cooperate with the Python memory manager. Such objects may not be eligible
61 for automatic garbage collection and you have to make sure that they are
62 released accordingly whenever their destructor gets called (cf. the specific
63 form of memory management you're using).
64 
65 Unless you have specific memory management requirements, use
66 PyObject_{New, NewVar, Del}.
67 */
68 
69 /*
70  * Raw object memory interface
71  * ===========================
72  */
73 
74 /* Functions to call the same malloc/realloc/free as used by Python's
75  object allocator. If WITH_PYMALLOC is enabled, these may differ from
76  the platform malloc/realloc/free. The Python object allocator is
77  designed for fast, cache-conscious allocation of many "small" objects,
78  and with low hidden memory overhead.
79 
80  PyObject_Malloc(0) returns a unique non-NULL pointer if possible.
81 
82  PyObject_Realloc(NULL, n) acts like PyObject_Malloc(n).
83  PyObject_Realloc(p != NULL, 0) does not return NULL, or free the memory
84  at p.
85 
86  Returned pointers must be checked for NULL explicitly; no action is
87  performed on failure other than to return NULL (no warning it printed, no
88  exception is set, etc).
89 
90  For allocating objects, use PyObject_{New, NewVar} instead whenever
91  possible. The PyObject_{Malloc, Realloc, Free} family is exposed
92  so that you can exploit Python's small-block allocator for non-object
93  uses. If you must use these routines to allocate object memory, make sure
94  the object gets initialized via PyObject_{Init, InitVar} after obtaining
95  the raw memory.
96 */
97 PyAPI_FUNC(void *) PyObject_Malloc(size_t);
98 PyAPI_FUNC(void *) PyObject_Realloc(void *, size_t);
99 PyAPI_FUNC(void) PyObject_Free(void *);
100 
101 
102 /* Macros */
103 #ifdef WITH_PYMALLOC
104 #ifdef PYMALLOC_DEBUG /* WITH_PYMALLOC && PYMALLOC_DEBUG */
105 PyAPI_FUNC(void *) _PyObject_DebugMalloc(size_t nbytes);
106 PyAPI_FUNC(void *) _PyObject_DebugRealloc(void *p, size_t nbytes);
107 PyAPI_FUNC(void) _PyObject_DebugFree(void *p);
108 PyAPI_FUNC(void) _PyObject_DebugDumpAddress(const void *p);
109 PyAPI_FUNC(void) _PyObject_DebugCheckAddress(const void *p);
110 PyAPI_FUNC(void) _PyObject_DebugMallocStats(void);
111 PyAPI_FUNC(void *) _PyObject_DebugMallocApi(char api, size_t nbytes);
112 PyAPI_FUNC(void *) _PyObject_DebugReallocApi(char api, void *p, size_t nbytes);
113 PyAPI_FUNC(void) _PyObject_DebugFreeApi(char api, void *p);
114 PyAPI_FUNC(void) _PyObject_DebugCheckAddressApi(char api, const void *p);
115 PyAPI_FUNC(void *) _PyMem_DebugMalloc(size_t nbytes);
116 PyAPI_FUNC(void *) _PyMem_DebugRealloc(void *p, size_t nbytes);
117 PyAPI_FUNC(void) _PyMem_DebugFree(void *p);
118 #define PyObject_MALLOC _PyObject_DebugMalloc
119 #define PyObject_Malloc _PyObject_DebugMalloc
120 #define PyObject_REALLOC _PyObject_DebugRealloc
121 #define PyObject_Realloc _PyObject_DebugRealloc
122 #define PyObject_FREE _PyObject_DebugFree
123 #define PyObject_Free _PyObject_DebugFree
124 
125 #else /* WITH_PYMALLOC && ! PYMALLOC_DEBUG */
126 #define PyObject_MALLOC PyObject_Malloc
127 #define PyObject_REALLOC PyObject_Realloc
128 #define PyObject_FREE PyObject_Free
129 #endif
130 
131 #else /* ! WITH_PYMALLOC */
132 #define PyObject_MALLOC PyMem_MALLOC
133 #define PyObject_REALLOC PyMem_REALLOC
134 #define PyObject_FREE PyMem_FREE
135 
136 #endif /* WITH_PYMALLOC */
137 
138 #define PyObject_Del PyObject_Free
139 #define PyObject_DEL PyObject_FREE
140 
141 /* for source compatibility with 2.2 */
142 #define _PyObject_Del PyObject_Free
143 
144 /*
145  * Generic object allocator interface
146  * ==================================
147  */
148 
149 /* Functions */
150 PyAPI_FUNC(PyObject *) PyObject_Init(PyObject *, PyTypeObject *);
151 PyAPI_FUNC(PyVarObject *) PyObject_InitVar(PyVarObject *,
152  PyTypeObject *, Py_ssize_t);
153 PyAPI_FUNC(PyObject *) _PyObject_New(PyTypeObject *);
154 PyAPI_FUNC(PyVarObject *) _PyObject_NewVar(PyTypeObject *, Py_ssize_t);
155 
156 #define PyObject_New(type, typeobj) \
157  ( (type *) _PyObject_New(typeobj) )
158 #define PyObject_NewVar(type, typeobj, n) \
159  ( (type *) _PyObject_NewVar((typeobj), (n)) )
160 
161 /* Macros trading binary compatibility for speed. See also pymem.h.
162  Note that these macros expect non-NULL object pointers.*/
163 #define PyObject_INIT(op, typeobj) \
164  ( Py_TYPE(op) = (typeobj), _Py_NewReference((PyObject *)(op)), (op) )
165 #define PyObject_INIT_VAR(op, typeobj, size) \
166  ( Py_SIZE(op) = (size), PyObject_INIT((op), (typeobj)) )
167 
168 #define _PyObject_SIZE(typeobj) ( (typeobj)->tp_basicsize )
169 
170 /* _PyObject_VAR_SIZE returns the number of bytes (as size_t) allocated for a
171  vrbl-size object with nitems items, exclusive of gc overhead (if any). The
172  value is rounded up to the closest multiple of sizeof(void *), in order to
173  ensure that pointer fields at the end of the object are correctly aligned
174  for the platform (this is of special importance for subclasses of, e.g.,
175  str or long, so that pointers can be stored after the embedded data).
176 
177  Note that there's no memory wastage in doing this, as malloc has to
178  return (at worst) pointer-aligned memory anyway.
179 */
180 #if ((SIZEOF_VOID_P - 1) & SIZEOF_VOID_P) != 0
181 # error "_PyObject_VAR_SIZE requires SIZEOF_VOID_P be a power of 2"
182 #endif
183 
184 #define _PyObject_VAR_SIZE(typeobj, nitems) \
185  (size_t) \
186  ( ( (typeobj)->tp_basicsize + \
187  (nitems)*(typeobj)->tp_itemsize + \
188  (SIZEOF_VOID_P - 1) \
189  ) & ~(SIZEOF_VOID_P - 1) \
190  )
191 
192 #define PyObject_NEW(type, typeobj) \
193 ( (type *) PyObject_Init( \
194  (PyObject *) PyObject_MALLOC( _PyObject_SIZE(typeobj) ), (typeobj)) )
195 
196 #define PyObject_NEW_VAR(type, typeobj, n) \
197 ( (type *) PyObject_InitVar( \
198  (PyVarObject *) PyObject_MALLOC(_PyObject_VAR_SIZE((typeobj),(n)) ),\
199  (typeobj), (n)) )
200 
201 /* This example code implements an object constructor with a custom
202  allocator, where PyObject_New is inlined, and shows the important
203  distinction between two steps (at least):
204  1) the actual allocation of the object storage;
205  2) the initialization of the Python specific fields
206  in this storage with PyObject_{Init, InitVar}.
207 
208  PyObject *
209  YourObject_New(...)
210  {
211  PyObject *op;
212 
213  op = (PyObject *) Your_Allocator(_PyObject_SIZE(YourTypeStruct));
214  if (op == NULL)
215  return PyErr_NoMemory();
216 
217  PyObject_Init(op, &YourTypeStruct);
218 
219  op->ob_field = value;
220  ...
221  return op;
222  }
223 
224  Note that in C++, the use of the new operator usually implies that
225  the 1st step is performed automatically for you, so in a C++ class
226  constructor you would start directly with PyObject_Init/InitVar
227 */
228 
229 /*
230  * Garbage Collection Support
231  * ==========================
232  */
233 
234 /* C equivalent of gc.collect(). */
235 PyAPI_FUNC(Py_ssize_t) PyGC_Collect(void);
236 
237 /* Test if a type has a GC head */
238 #define PyType_IS_GC(t) PyType_HasFeature((t), Py_TPFLAGS_HAVE_GC)
239 
240 /* Test if an object has a GC head */
241 #define PyObject_IS_GC(o) (PyType_IS_GC(Py_TYPE(o)) && \
242  (Py_TYPE(o)->tp_is_gc == NULL || Py_TYPE(o)->tp_is_gc(o)))
243 
244 PyAPI_FUNC(PyVarObject *) _PyObject_GC_Resize(PyVarObject *, Py_ssize_t);
245 #define PyObject_GC_Resize(type, op, n) \
246  ( (type *) _PyObject_GC_Resize((PyVarObject *)(op), (n)) )
247 
248 /* for source compatibility with 2.2 */
249 #define _PyObject_GC_Del PyObject_GC_Del
250 
251 /* GC information is stored BEFORE the object structure. */
252 typedef union _gc_head {
253  struct {
256  Py_ssize_t gc_refs;
257  } gc;
258  long double dummy; /* force worst-case alignment */
259 } PyGC_Head;
260 
262 
263 #define _Py_AS_GC(o) ((PyGC_Head *)(o)-1)
264 
265 #define _PyGC_REFS_UNTRACKED (-2)
266 #define _PyGC_REFS_REACHABLE (-3)
267 #define _PyGC_REFS_TENTATIVELY_UNREACHABLE (-4)
268 
269 /* Tell the GC to track this object. NB: While the object is tracked the
270  * collector it must be safe to call the ob_traverse method. */
271 #define _PyObject_GC_TRACK(o) do { \
272  PyGC_Head *g = _Py_AS_GC(o); \
273  if (g->gc.gc_refs != _PyGC_REFS_UNTRACKED) \
274  Py_FatalError("GC object already tracked"); \
275  g->gc.gc_refs = _PyGC_REFS_REACHABLE; \
276  g->gc.gc_next = _PyGC_generation0; \
277  g->gc.gc_prev = _PyGC_generation0->gc.gc_prev; \
278  g->gc.gc_prev->gc.gc_next = g; \
279  _PyGC_generation0->gc.gc_prev = g; \
280  } while (0);
281 
282 /* Tell the GC to stop tracking this object.
283  * gc_next doesn't need to be set to NULL, but doing so is a good
284  * way to provoke memory errors if calling code is confused.
285  */
286 #define _PyObject_GC_UNTRACK(o) do { \
287  PyGC_Head *g = _Py_AS_GC(o); \
288  assert(g->gc.gc_refs != _PyGC_REFS_UNTRACKED); \
289  g->gc.gc_refs = _PyGC_REFS_UNTRACKED; \
290  g->gc.gc_prev->gc.gc_next = g->gc.gc_next; \
291  g->gc.gc_next->gc.gc_prev = g->gc.gc_prev; \
292  g->gc.gc_next = NULL; \
293  } while (0);
294 
295 /* True if the object is currently tracked by the GC. */
296 #define _PyObject_GC_IS_TRACKED(o) \
297  ((_Py_AS_GC(o))->gc.gc_refs != _PyGC_REFS_UNTRACKED)
298 
299 /* True if the object may be tracked by the GC in the future, or already is.
300  This can be useful to implement some optimizations. */
301 #define _PyObject_GC_MAY_BE_TRACKED(obj) \
302  (PyObject_IS_GC(obj) && \
303  (!PyTuple_CheckExact(obj) || _PyObject_GC_IS_TRACKED(obj)))
304 
305 
306 PyAPI_FUNC(PyObject *) _PyObject_GC_Malloc(size_t);
307 PyAPI_FUNC(PyObject *) _PyObject_GC_New(PyTypeObject *);
308 PyAPI_FUNC(PyVarObject *) _PyObject_GC_NewVar(PyTypeObject *, Py_ssize_t);
309 PyAPI_FUNC(void) PyObject_GC_Track(void *);
310 PyAPI_FUNC(void) PyObject_GC_UnTrack(void *);
311 PyAPI_FUNC(void) PyObject_GC_Del(void *);
312 
313 #define PyObject_GC_New(type, typeobj) \
314  ( (type *) _PyObject_GC_New(typeobj) )
315 #define PyObject_GC_NewVar(type, typeobj, n) \
316  ( (type *) _PyObject_GC_NewVar((typeobj), (n)) )
317 
318 
319 /* Utility macro to help write tp_traverse functions.
320  * To use this macro, the tp_traverse function must name its arguments
321  * "visit" and "arg". This is intended to keep tp_traverse functions
322  * looking as much alike as possible.
323  */
324 #define Py_VISIT(op) \
325  do { \
326  if (op) { \
327  int vret = visit((PyObject *)(op), arg); \
328  if (vret) \
329  return vret; \
330  } \
331  } while (0)
332 
333 /* This is here for the sake of backwards compatibility. Extensions that
334  * use the old GC API will still compile but the objects will not be
335  * tracked by the GC. */
336 #define PyGC_HEAD_SIZE 0
337 #define PyObject_GC_Init(op)
338 #define PyObject_GC_Fini(op)
339 #define PyObject_AS_GC(op) (op)
340 #define PyObject_FROM_GC(op) (op)
341 
342 
343 /* Test if a type supports weak references */
344 #define PyType_SUPPORTS_WEAKREFS(t) \
345  (PyType_HasFeature((t), Py_TPFLAGS_HAVE_WEAKREFS) \
346  && ((t)->tp_weaklistoffset > 0))
347 
348 #define PyObject_GET_WEAKREFS_LISTPTR(o) \
349  ((PyObject **) (((char *) (o)) + Py_TYPE(o)->tp_weaklistoffset))
350 
351 #ifdef __cplusplus
352 }
353 #endif
354 #endif /* !Py_OBJIMPL_H */

Copyright 2014 Google Inc. All rights reserved.